We fit strangers in stereotypes, and we like strangers who fit our stereotypes and act congruently. Dealing with people we know allows for more personalized modeling, but we still want associates and companions to stick to their roles.
Most everyone in most every office resembles a character on The Office, not just in the broad strokes of the Gervais Principle but down to details of job, dress, and personality. Husbands and wives have played out “if it weren’t for you” patterns long before Games People Play described them.
The main difference from predicting strangers is that dealing with familiar people allows for active inference: enforcing others’ conformity to prediction. Valentine Smith describes this in his excellent essay The Intelligent Social Web:
You move away [from your family] and make new friends and become a new person […] But then you visit your parents, and suddenly you feel and act a lot like you did before you moved away. You might even try to hold onto this “new you” with them… and they might respond to what they see as strange behavior by trying to nudge you into acting “normal”: ignoring surprising things you say, changing the topic to something familiar, starting an old fight, etc.
This nudging is effected by thousands of small actions perpetrated by dozens of people. We receive small negative reinforcements when we do something unpredictable that causes others’ models to momentarily fail, and positive rewards when we conform to our roles. The social life of an office or a family is too complex to compute without stable roles assigned to people, the same way a brain can’t cohere a visual scene without the expectation that visual objects remain stable.
Life in the social web means that growth and change are harder than they appear. Hard, but not impossible.